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1. One of the main foundational problems of quantum field theory dates back
to Dirac’s development! of radiation theory from the perturbation of a “free”
Hamiltonian H, by an “interaction” Hamiltonian H;. From a Hilbert space out-
look which became applicable later, the situation was essentially that the total
Hamiltonian H = H, + H, could be given mathematical existence as a bilinear
form, in the sense that “first-order transition matrix” elements (Hyi, v»)
were well-defined for suitable state vectors y1 and ¢, forming an extensive class
within the state vector Hilbert spaces in question. However, as an operator in
Hilbert space, H did not appear to have in its domain any nonzero vector; this
circumstance left the foundations ambiguous, and was associated with profound
difficulties in the treatment of second and higher-order approximations to the
transition matrix elements. Although quantum field theory has been extensively
developed since the time of Dirac, on the basis both of heuristic physical considera-
tions and rigorous mathematical ones, the indicated unsatisfactory situation re-
garding the total field Hamiltonian remains unaltered to this day, from a founda-
tional standpoint, for any nontrivial radiation theory.?

In a series of papers mainly in and before the 1950’s, I essayed an approach in
which the Hamiltonian does not appear as a self-adjoint operator in an ad hoc
state vector space (such as the presumptive free quantum field state vector space),
but rather as the generator of a group of automorphisms? of a C*-algebra of field ob-
servables. In more conventional physical language, this meant that ¢ Xe —itH =
X (#) might have an unexceptionable mathematical interpretation for conceptually
measurable field observables X, although H itself might have no existence as an
operator on the free quantum field Hilbert space K, and X (¢) would be quite mean-
ingless for an arbitrary bounded operator X on K. (Explicit examples of such
phenomena could readily be given, e.g., the quantized field associated with the
partial differential equation op = m? + V(x)¢ when V(x) is bounded and
regular but not rapidly decreasing at infinity.) The conceptually measurable
operators X in question are naturally taken, for theoretical reasons,* to form a C*-
algebra; in particular, the class of operators X for which X (f) is appropriately de-
finable is automatically a C*-algebra. The distinction between C*-algebras and
the more restricted rings of operators (or W*-algebras) introduced by Murray and
von Neumann is here essential; in the case, for example, of the algebra of all
(bounded) operators, every continuous one-parameter group of automorphisms is
induced by a self-adjoint operator, and one is back to the original problem (except
for the elimination of any zero-point energy).

On the other hand, somewhat paradoxically, this C*-algebra approach leads
ultimately in suitable cases to a Hamiltonian which is a self-adjoint operator in a
specific Hilbert space, and not merely the generator of a one-parameter group of
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abstract C*-automorphisms; this Hilbert space K, is, however, entirely a postiorz,
and only has no explicit relation to the a priori free quantum field state vector
space K.5> More specifically, a vacuum state is, within the C*-framework, a state
(in the sense of an expectation value form) which is temporally stationary, and
such that the induced one-parameter unitary group in the Hilbert space associated
with the state® has a nonnegative generator; this generator represents the total
field Hamiltonian, acting on the state vector space K, of the interacting field.?
The free and interacting constituents Hy and H, of the total formal Hamiltonian
are not represented on K, in a natural fashion, and there is no apparent means to
represent H directly on K, as a sum of constituents representing Ho and H,. (These
points may be exemplified in detail through consideration of the quantum field
cited earlier, in which case K; and the total Hamiltonian H as represented on K;
may be determined in closed form.)

The nonlinear terms in the fundamental partial differential equations of the
relativistic theory, in which the central difficulties originate, were given a reinter-
pretation in reference 8 in terms of the Wick product at a precise time. This
product, previously utilized primarily for the facility it provided in computations
and the physical interpretation of perturbative processes, possesses invariant and
characteristic algebraic features which provide a basis for its foundational use.
Combining this idea with earlier developments, this note outlines progress in
treating two-dimensional relativistic nonlinear fields under the approach indicated
above. Although without direct physical relevance, the treatment of two-dimen-
sional cases appears to be a necessary preliminary to that of four-dimensional cases,
and two-dimensional models have attracted increasing theoretical attention of
late; it appears actually that the four-dimensional case, while in part materially
more singular, follows in part along parallel lines.

2. For succinctness and easier access to what is presently essential, generality
and secondary details are avoided in the summary of our results on Wick products
as

TurEoREM 1. Let ¢(x, t) denote the conventional neutral scalar field in two space-time
dimensions, as a self-adjoint-operator-valued mapping f — &,(f) = S ¢(z,t)f(x)dx,
where f ts arbitrary in the space D of real infinitely differentiable functions of com-
pact support on the line, on the (free) Hilbert space K. Let ®(f) = &o(f) and &(f) =
S 6(z,0)f(x) de.

(a) There exist unique maps ®™ from D to the self-adjoint operators in K, linear
relative to strong linear operations on unbounded operators (i.e., the closures of the
usual ones), such that

20()) = #(f);
®™ (f) has in its domain the free.vacuum v and
(@™ (Nv,) = 0;
the following commutation relations are valid in their bounded (exponentiated) form:*°
[2™(f),2™(9)] =0,  [&(), 2™ (9)] = nd"~(fg).

(b) If G is any open set on the line and f is supported by G, f € D, then exp[id™(f)]
is in the ring of operators generated by the exp[i®(g)] as g varies over the elements of D
supported by G.
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(¢) Let H, denote the real Hilbert space of all normalizable solutions of the Klein-
Gordon equation whose first time derivative vanishes at t = 0, and let K be represented
as Ly(H,,d) where d denotes the isonormal probability distribution in H, according to
the duality transform defined in reference 10. The operators ®™(f) are then cor-
respondingly represented as the operations of multiplications by functions which are in
L,(H,d) forallp <o (feD,n =1,2, ...).

The proof may be made largely within the framework of generalized stochastic
process theory on abelian groups.!! More specifically, ®(f) may be represented as a
random variable, with expectation values corresponding to the vacuum expectation
values, and is then a normal distribution of mean 0 and covariance E(®(f)®(g)) =
S f(k)g(k)(m? + k?)—'/:dk. The argument becomes more transparent and the
results usefully more general if ® is permitted to be a process on an arbitrary locally
compact abelian group G (written additively), of the form ¢(x) ~ S g+ A(x) (X) dA,
where G* denotes the character group of G, and dX is the element of Haar measure
on G*, such that: (a) #(\) = ¢(—N), (b) é(\) and $()\’) are stochastically inde-
pendent unless ' = = X, (c) E(6(N)S(\)) = e(\)s(A — N'), with ¢(\) € L,(G*) for
all p > 1.12

If f is the characteristic function of a compact set in G*, then the limit as f — 1
of the weak distribution, h — S* ®(g,)? h(zx)dz, where § = f and ¢.(y) = g(y — ),
will in general fail to exist; however, if from J° ®(g,)%(z)dz is subtracted its
expectation value, the resulting weak distribution does econverge in L, on the domain
of all continuous functions of compact support, as may be established by direct
estimation of the variances involved. The result is then the second-order (gen-
eralized Wick) product

*(h) = lim; 1 S [8(g:)? — E($(g.)?]h(z)dx
Similar estimates involving products of arbitrary even order of the ¢(2\) show that
®@(h) is pth-power integrable for all p < .

The higher products are combinatorially quite complicated, and more complex
subtractions are involved, but a basically similar analysis is effective. The var-
iance of ®™(h) is bounded in all cases in terms of the n-fold convolution of ¢(\)
with itself, and this remains in L, for all p < « by the Hausdorff-Young theorem.
Having thus constructed the weak distributions ®™(f) explicitly, it follows from
general spectral theory that they are self-adjoint and mutually commutative, and
it is readily verifiable that ®™(f) has the indicated localization, in terms of the
(g).

3. Theorem 1 applies directly to the consideration of the spatially cut-off Hamil-
tonian for a scalar relativistic quantum field in two space-time dimensions. If
p is any real polynomial, say p(s) = a + ais + ... + ais*, ®P)(f) is naturally
defined as the closure of ay( S )I + a®V () + ... + a;®™®(f), and the spatially
cut-off interaction Hamiltonian associated with the relativistic equation

0é = m¥ + p'(¢) *

may be naturally taken, in the first instance, as the self-adjoint operator H,(f) =

BI7(f).
THEOREM 2. Let H, denoted the conventional free-field Hamiltonian associated
with (the linear part of) equation (*). Then Hy + H(f) is densely defined and has a

self-adjoint extension H(f).
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The proof depends on the use of the representation cited in part (¢) of Theorem
1. A conventional n-particle state vector ¢ is represented by a functional which
is a polynomial of degree n on H,, and hence in L,(H,,d) for all p < «. The
operator ®!?1(f) is that of multiplication by a functional which is likewise in L,-
(H,,d) for all p < . It follows now from Hoélder’s inequality that the product of
the latter functional with ¢ is again in L, for all p < «, and in particular in Ly,
signifying that ¥ is in the domain of ®71(f) = H(¥).

It is easily seen that if the single-particle constituents of the n-particle state y
are in the domain of the single-particle (free) Hamiltonian, then ¢ is in the domain
of Hy. Such suitably regular n-particle state vectors span a dense set in K, show-
ing that Hy 4+ H,(f) is densely defined. Both H, and H,(f) are invariant under
the conjugation on K represented by complex conjugation on L,(H,,d), and hence
so also is their sum, which implies according to a well-known result that it admits
a self-adjoint extension.

4. The well-known domain of dependence properties of hyperbolic partial dif-
ferential equations provides an intuitive basis for the existence of a theorem formu-
lating the heuristic idea that a quantum field ¢(z,t) satisfying equation (*) (in
some sense) should be a function (in a suitable sense) of the operators ¢(y,0), as
y ranges over the classical region of control for the point (z,t) at the time 0. This
would in turn suggest that, locally, the Heisenberg field operators

eitH(f)¢(x 0) e—itH(/)
b

should be independent of f, if f is chosen to have the value 1 on a sufficiently large
space region. In order to make a precise formulation, as well as to facilitate
the later treatment of the vacuum, it is convenient to introduce the C'*-algebra A
of all bounded operators on K which may be approximated uniformly by bounded
operators in the ring of operators generated by the exp[:®(f)] and exp[id(g)] as
f and g range over the elements of D supported by some bounded set B; any such
bounded operator will be said to have support B, and A will be called the space-
finite Weyl algebra (cf. ref. 13).

THEOREM 3. There exists a one-parameter group T'(t) of automorphisms of the
space-finite Weyl algebra which vs uniquely determined by the condition that

I'()(X) = exp[stH()]1X exp[—itH(f)]

whenever X has support B, and f(x) = 1 on a set C conlaining B + [—t,t], provided
the H(f) are unique.

The proof uses an extension of the (Lie) product formula for the exponential of
the sum of two operators. This is applicable by virtue of the essential self-adjoint-
ness of Hy + H(f) which results from the uniqueness assumption on H(f).* Em-
ploying the localization property for the Wick product (part (b), Theorem 1) and
the hyperbolic propagation character of the free field in a sense indicated earlier
(which is readily deduced from a corresponding property of the associated classical
equation), it follows that the propagation generated by H(f) has the anticipated
domains of dependence and regions of influence, and the indicated conclusion
follows.®

5. The basic methods employed above are applicable to a variety of types of
fields, in addition to scalar ones. In fact, the trilinear boson-fermion interaction
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in two dimensions is in some respects simpler than the present ones. The unique-
ness question will (in all probability) require further assumptions on the interaction
Hamiltonian.’® The same is true of the existence and uniqueness of a vacuum.
Later notes are planned to treat these matters.

Summary.—For a general class of nonlinear relativistic quantum fields in two
space-time dimensions, if f denotes any real nonnegative infinitely differentiable
function of compact support, then the expression Hy + fH ;, where Hy, and H; denote
natural mathematical formulations of the conventional free and interaction Hamil-
tonians, represents in a natural fashion a densely defined operator in the free field
Hilbert space, having a self-adjoint extension H(f). If these extensions are unique,
the Heisenberg field corresponding to H(f) has a limit as f — 1 representing mathe-
matically the motion induced by the relativistic Hamiltonian.

1 Dirae, P. A. M., “The quantum theory of the emission and absorption of radiation,” Proc.
Roy. Soc. London, A114, 243-265 (1927).

21t was recognized quite early how Ho, might appropriately be represented as a self-adjoint
operator. More recently it was shown that H; could be represented as a self-adjoint operator
(in the case of periodic boundary conditions in space) in a suitable representation of the field
operators (Segal, I., Ann. Math., 72, 594-602 (1960)). However, the existence of a single repre-
sentation in which both Ho and H; are represented by self-adjoint operators has remained open,
as have, a fortiori, such questions as the existence of a nontrivial common domain, ete.

3 An aqutomorphism of an algebra of operators is here defined as a mapping A — I'(4) which
preserves all algebraic operations:

I'(4 + B) = I'(4) + I'(B), T(4B) = T(4)I'(B), T(4*) = (T(A))* T(cA) = cI'(4).

4 Cf. Segal, 1., “Postulates for general quantum mechanics,”” Ann. Math., 48, 930-948 (1947).

5 There is an analogy with a floating boundary value problem for a nonlinear partial differential
equation.

6 Cf. Segal, I., “A class of operator algebras which are determined by groups,”” Duke Math. J.,
18, 221-265 (1951), Sec. 5.

7 Essential uniqueness of the vaccum is anticipated, but is established as yet only for linear
fields (Segal, I., Ill. J. Math., 6, 500-523 (1962)).

8 Segal, 1., Compt. Rend., 259, 301-303 (1964).

9 These involve only the bounded operators exp[¢®™ (f)] and exp [ip(g)], and may be given
in closed form, but are more complicated than the infinitesimal commutation relations.

10 Segal, I., ‘“Tensor algebras over Hilbert spaces. 1,”” Trans. Am. Math. Soc., 18, 106-134
(1956).

11 Indeed, in the special case m = 0, the results are applicable to the Brownian motion process,
and provide incidentally a definition for a pseudopower: (z"/*(t)": of the fractional derivative of
order !/, of the Wiener process. The characterization of the Wick products in Theorem 1 is related
to a characterization of the pseudopowers by their transformation properties under displacements
in function space, whose effectiveness results from the absolute continuity and ergodicity of such
displacements in Wiener space. Cf. Segal, 1., in Proceedings of the Conference on Functional
Integration, (M. 1. T., April 1966), pp. 80-87.

12 These conditions may be relaxed substantially, and Wick products relative to vacuum states
other than the free vacuum thereby defined. Condition (¢) fails in four-dimensional space time,
since the function c(A) which intervenes is in L, only for p > 3 and cannot be convolved with
itself. The case in which ¢(\) e L, is that of a strict process (defined pointwise on G) and does not
occeur in a relativistic field theory.

13 Segal, 1., “Foundations of the theory of dynamical systems of infinitely many degrees of
freedom,” Mat.-Fys. Medd. Danske Vid. Selsk., 31, no. 12, 1-38 (1959).

14 Cf. Nelson, E., “Feynman integrals and the Schrodinger equation,” J. Math. Phys., 5, 332—
343 (1964), Appendix B.



Vou. 57, 1967 MATHEMATICS: I. SEGAL 1183

15 Note that the total interaction Hamiltonian exists in the same sense, i.e., not necessarily as
an operator but as an (unbounded) derivation of the Weyl algebra, or generator of a suitably con-
tinuous one-parameter group of automorphisms. Such a derivation may be identified with a
self-adjoint operator in case the one-parameter group is induced by a one-parameter unitary
group, whose self-adjoint generator is then uniquely determined (if required to annihilate the
vacuum) and represents the derivation. Thus Ho + fH is in the first instance a derivation, but
is here shown to represent in the foregoing sense an operator, under suitable conditions.

16 Cf. the investigation of the case O¢ = m?¢ + g¢® with periodic boundary conditions by
different methods by Nelson, E., ““A quartic interaction in two dimensions,”” in Mathematical
Theory of Elementary Particles, ed. R. W. Goodman and I. E. Segal (Cambridge: M. I. T. Press,
1966), pp. 69-74.



